5x^2+2x+10=16x^2+8x+1

Simple and best practice solution for 5x^2+2x+10=16x^2+8x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x^2+2x+10=16x^2+8x+1 equation:



5x^2+2x+10=16x^2+8x+1
We move all terms to the left:
5x^2+2x+10-(16x^2+8x+1)=0
We get rid of parentheses
5x^2-16x^2+2x-8x-1+10=0
We add all the numbers together, and all the variables
-11x^2-6x+9=0
a = -11; b = -6; c = +9;
Δ = b2-4ac
Δ = -62-4·(-11)·9
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-12\sqrt{3}}{2*-11}=\frac{6-12\sqrt{3}}{-22} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+12\sqrt{3}}{2*-11}=\frac{6+12\sqrt{3}}{-22} $

See similar equations:

| x+1/2(90-x)=72 | | 5a=-9-a | | .x+24=−2047= | | d−3=2 | | 34x+95=3x23 | | -8+x=3x-8 | | 90+2.5x+x=180 | | 36–4.5x+36=102–7.5x+60 | | -10w+8=-4w-10 | | 2+12-x=17 | | .x+24=−2047 | | 3x^{2}+11x=2x^{2}-18 | | 7a-3-4a=-13 | | 3x-3+3x-3=5x-1 | | 6=4+x10 | | 3/36=x/24 | | 65+2+x=180 | | 180=(50)+(7x-1) | | a+10=-3 | | 3t^2-5t^2+2t=0 | | 5n+5)−6(2n+3)=12 | | 8x-24=20 | | 2m+10m=-12 | | 5x+28=5x-1x | | 180=50+7x-1 | | 9(2+2x)=7+5 | | 5.50=s-11.50 | | 20x+2=50-7x | | 8+2w+(w-2)=154 | | 5^2=k÷5 | | w+4/6=5/4 | | Y=-3.5+3x |

Equations solver categories